Volker Perlick


Email: vper0433@itp.physik.tu-berlin.de

Curriculum Vitae

Research Interests

Publications



Curriculum Vitae


Research Interests

My research interests are concentrated on certain aspects of the theory of gravitational lensing. In its most general sense, the name "gravitational lensing" comprises all influences of gravitational fields (coded in the spacetime geometry) on light rays. More specifically, I am interested in those mathematical methods where the formalism of general relativity is not mutilated by quasi-Newtonian approximations. This kind of research goes under the heading "gravitational lensing from a spacetime perspective" or "non-perturbative gravitational lensing". It includes interesting applications of differential geometry, differential topology, and global analysis. Here are some of the subjects covered. For details please see my Living Review: Gravitational lensing from a spacetime perspective, Living Rev. Relativity 7 (2004) 9 [Online Article] http://www.livingreviews.org/lrr-2004-9


Publications

Books and Review Articles

  1. V. Perlick: Ray optics, Fermat's principle, and applications to general relativity, Springer Lecture Notes in Physics m61, Springer, Heidelberg (2000), more information
  2. V. Perlick: Gravitational lensing from a geometric viewpoint, in B. Schmidt (ed.) "Einstein's field equations and their physical interpretations" Selected Essays in Honour of Jürgen Ehlers, Springer, Heidelberg (2000) pp.373-425 ps-file
  3. V. Perlick: Gravitational lensing from a spacetime perspective, Living Rev. Relativity 7 (2004) 9 [Online Article] http://www.livingreviews.org/lrr-2004-9
  4. J. Frauendiener, D. Giulini, V. Perlick (eds.): Mathematical relativity. New ideas and developments, Proceedings of the 319. Heraeus Seminar, Bad Honnef, March 1 - 5, 2004, to appear 2005, Springer, Heidelberg conference homepage, conference photo
  5. M. Kriele, V. Perlick: Spacetime, 2nd edition, Springer, Heidelberg, to appear (some time, in the future, I hope ... )

Research Articles

  1. V. Perlick: Characterization of standard clocks by means of light rays and freely falling particles, Gen. Rel. Grav. 19, 1059-1073 (1987)
  2. W. Hasse, V. Perlick: Geometrical and kinematical characterization of parallax-free world models, J. Math. Phys. 29, 2064-2068 (1988)
  3. V. Perlick: On redshift and parallaxes in general-relativistic kinematical world models, J. Math. Phys. 31, 1962-1971 (1990)
  4. W. Rindler, V. Perlick: Rotating coordinates as tools for calculating circular geodesics and gyroscopic precession, Gen. Rel. Grav. 22, 1067-1081 (1990)
  5. V. Perlick: On Fermat's principle in general relativity. I. The general case, Class Quant. Grav. 7, 1319-1331 (1990)
  6. V. Perlick: On Fermat's principle in general relativity. II. The conformally stationary case, Class Quant. Grav. 7, 1849-1867 (1990)
  7. V. Perlick: Observer fields in Weylian spacetime models, Class. Quant. Grav. 8, 1369-1385 (1991)
  8. V. Perlick: A class of stationary charged dust solutions of Einstein's field equations, Gen. Rel. Grav. 23, 1337-1348 (1991)
  9. V. Perlick: The brachystochrone problem in stationary space-times, J. Math. Phys. 32, 3148-3157 (1991)
  10. V. Perlick: The Hamiltonization problem from a global viewpoint, J. Math. Phys. 33, 599-606 (1992)
  11. V. Perlick: Bertrand spacetimes, Class. Quant. Grav. 9, 1009-1021 (1992)
  12. V. Perlick, W. Hasse: Gravitational Faraday effect in conformally stationary spacetimes, Class. Quant. Grav. 10, 147-161 (1993)
  13. V. Perlick: Characterization of standard clocks, in U. Majer, H.-J. Schmidt (eds.) "Semantical aspects of spacetime", BI Wissenschaftsverlag, Mannheim (1994) pp. 169-180
  14. V. Perlick, Xu C.: Matching exterior to interior solutions in Weyl gravity, Astrophys. J. 449, 47-51 (1995) pdf-file
  15. V. Perlick: Infinite dimensional Morse theory and Fermat's principle in general relativity. I., J. Math. Phys. 36, 6915-6928 (1995)
  16. V. Perlick: Criteria for multiple imaging in Lorentzian manifolds, Class. Quant. Grav. 13, 529-537 (1996)
  17. W. Hasse, M. Kriele, V. Perlick: Caustics of wavefronts in general relativity, Class. Quant. Grav. 13, 1161-1182 (1996)
  18. V. Perlick: Fermat's principle, Morse theory and applications to the gravitational lens effect, Nonlinear Analysis 30, 617-615 (1997)
  19. V. Perlick, P. Piccione: A general-relativistic Fermat principle for extended light sources and extended receivers, Gen. Rel. Grav. 30, 1461-1476 (1998) ps-file
  20. V. Perlick: Applications of Morse theory to gravitational lensing, in H.-J. Schmidt (ed.) "Current topics in mathematical topology", World Scientific, Singapore (1998) pp. 155-164
  21. W. Hasse, V. Perlick: On spacetime models with an isotropic Hubble law, Class. Quant. Grav. 16, 2559-2576 (1999) ps-file
  22. V. Perlick: Gravitational lensing in asymptotically simple and empty spacetimes, Annalen der Physik 9, SI139-SI142 (2000) ps-file
  23. V. Perlick: A variational principle for light rays in a general-relativistic plasma, Nonlinear Analysis 47, 3019-3030 (2001)
  24. V. Perlick: Global properties of gravitational lens maps in a Lorentzian manifold setting, Commun. Math. Phys. 220, 403-428 (2001) gr-qc/0009105
  25. T. Chrobok, V. Perlick: Classification of image distortion in terms of Petrov types, Class. Quant. Grav. 18, 3059-3079 (2001) gr-qc/0012088
  26. W. Hasse, V. Perlick: Gravitational lensing in spherically symmetric static spacetimes with centrifugal force reversal, Gen. Rel. Grav. 34, 415-433 (2002) gr-qc/0108002
  27. V. Perlick: Rotation of the polarization plane in the gravitational field of rotating objects, in R. Ruffini and C. Sigismondi (eds.) "Nonlinear gravitodynamics: The Lense-Thirring effect" Proceedings of the ICRA Network Workshop on the Lense-Thirring Effect, Rome and Pescara, 1998; World Scientific (2003) pp.135-144
  28. T. Foertsch, W. Hasse, V. Perlick: Inertial forces and photon surfaces in abitrary spacetimes, Class. Qant. Grav. 20, 4635-4651 (2003) gr-qc/0306042
  29. V. Perlick: Exact gravitational lens equation in spherically symmetric and static spacetimes, Phys. Rev. D69, 064017 (2004) gr-qc/0307072
  30. V. Perlick: On totally umbilic submanifolds in semi-Riemannian manifolds, Nonlinear Analysis (to appear), ps-file